Time Delay-Induced Instabilities and Hopf Bifurcations in General Reaction-Diffusion Systems

نویسندگان

  • Shanshan Chen
  • Junping Shi
  • Junjie Wei
چکیده

The distribution of the roots of a second order transcendental polynomial is analyzed, and it is used for solving the purely imaginary eigenvalue of a transcendental characteristic equation with two transcendental terms. The results are applied to the stability and associated Hopf bifurcation of a constant equilibrium of a general reaction–diffusion system or a system of ordinary differential equations with delay effects. Examples from biochemical reaction and predator–prey models are analyzed using the new techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf bifurcations in a reaction–diffusion population model with delay effect

A reaction-diffusion population model with a general time-delayed growth rate per capita is considered. From a careful analysis of the characteristic equation, the stability of the positive steady state solution and the existence of supercritical Hopf bifurcation from the positive steady state solution are obtained via the implicit function theorem, where the time delay is used as the bifurcati...

متن کامل

The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System

The slow dynamics and linearized stability of a two-spike quasi-equilibrium solution to a general class of reaction-diffusion (RD) system with and without sub-diffusion is analyzed. For both the case of regular and sub-diffusion, the method of matched asymptotic expansions is used to derive an ODE characterizing the spike locations in the absence of any O(1) time-scale instabilities of the two-...

متن کامل

Hopf bifurcation in a reaction–diffusion equation with distributed delay and Dirichlet boundary condition

The stability and Hopf bifurcation of the positive steady state to a general scalar reaction–diffusion equation with distributed delay and Dirichlet boundary condition are investigated in this paper. The time delay follows a Gamma distribution function. Through analyzing the corresponding eigenvalue problems, we rigorously show that Hopf bifurcations will occur when the shape parameter n ≥ 1, a...

متن کامل

Bifurcations in Delay Differential Equations and Applications to Tumor and Immune System Interaction Models

In this paper, we consider a two-dimensional delay differential system with two delays. By analyzing the distribution of eigenvalues, linear stability of the equilibria and existence of Hopf, Bautin, and Hopf–Hopf bifurcations are obtained in which the time delays are used as the bifurcation parameter. General formula for the direction, period, and stability of the bifurcated periodic solutions...

متن کامل

Turing instabilities and patterns near a Hopf bifurcation

Rui Dilão Grupo de Dinâmica Não-Linear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440, Bures-sur-Yvette, France. [email protected] Phone: +(351) 218417617; Fax: +(351) 218419123 Abstract We derive a necessary and sufficient condition for Turing instabilities to occur in twocomponent systems of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013